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ABSTRACT 

A n  expression fo r  the energy loss rate of an energetic test 

electron traversing a plasma is  derived from a binary collision 

viewpoint. 

is included through an -- ad hoc extension of the maximum impact 

Energy loss due t o  the excitation of plasma oscillation 

V paramter, A - . The solution is  generalized t o  include the 
wt 

effect of a translating plasma. 

An expression f o r  the distribution of energy losses of a beam 

of mn0energeti.c t e s t  electrons traversing a finite plasma is 

obtained through the so lu t im of a Boltzman equation. 

transmission of the beam i s  calculated using multiple scattering 

theory. 

The 

c 
Various aspects of' the electron- electron collision problem 

are discussed. 

i 
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INI'RODIJCTION 

The problem of the interaction af a test particle with a plasma 

is a very old problem which has been treated extensively f'rom many 

standpoints i n  the Interest in this problem has been 

stirrollated primarily by 

program, especially the 

through the interest  i n  

(. A , m r e  17J8 e l e  c t  mns 

the advent of the controlled themnuclear 

interaction of test electmm with a plasma 

calculatingthe phenomenon sf "run away" 

basic interest stems from the relationship 

of this problem t o  the kinetic. themy of ioniaed gases. authors 

have derived expressions for the energy loss 7-16 of an energetic test 

electran in a plasma. 

Much of the theoretical and experknental w m k  which has been 

done i n  connection with the c h a r g e d - p a r - L ~ p ~ m a  interactian has 

been concerned with the plasma interaction of a dense beam of 

electrons rather than with single test. electrons. The results 

ape considerably different and of larsr magnitude due to the 

coherent intemction of the beam particles ammg .thenselves. This 

paper will not be concerned w i t h  beam effects.. F i r t h e  complications 

arise due t o  applied magnetic fields 21s22. ~n excellent r e v i e w  

a r t i c l e  which contains an extensive bibl iogmpw of the theoretical 

1 
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and experirrtental. work on the interaction of. charged particles and 

beans of charged particles With a plasma is- presented i n  reference 

C19 1 

The object of the present repart is tQ calculate, from a 

collisional viewpoint, the energy loss sLtffered by an energetic 

t e s t  electmn traversing a plasma. The calculation is performed i n  

considerable detail using the correct Mott-scattering cross section 

fo r  electron-electron collisions. 

dynam3cal f r ic t ion and diffusion coefficients based on sinple 

lnve,rse-sqLlare law L-ntemctims and b v e  used. thme eoefficients in 

a FokkepPlanck equation t o  study the thesrealizatien of a group 

l ike  particles, continuing the calculation frman i n i t i a l  state, 

w >> w As w i l l  be 

pointed out i n  a subsequent chapter, for t e s t  electmn velocities 

close t o  the plasma the& velocity, the nnximun scattering angle 

becoms laxge enough so that the extra, terms. i n  the Mott cross 

Som authors 23s24 have derived 

, into a f b a l  s ta te  of c q l e t e  equilibrium. t 

section are significant and consequently the F&epPlanck 

coefficients calculated f r o m  an inverse-square law interaction are 

incorrect in principle, especially as applied t o  the self 

thermalization of an electron stream. 

The advantage of considering the energetic test electron 

interaction f r o m  a collisional viewpoint l i e s  i n  obtaining a 



' : I 
f 3 

sinple, physical interpretation of the results. The collisional 

picture fac i l i t a tes  a calculation for  the distribution of energy 

losses of a beam of t e s t  electrons traversing a plasm; and also 

the transmission of the beam, through multiple scattering theory. 

A n  e q e r i m n t a l  investigation of' test electron interactions would 

probably en ta i l  the use of a beam of tes t  electrons, so that the 

distribution of losses and the transmission calculations are 

inportant. 
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In this paper the energy loss  ra te  of an energetic test electron 

traversing a plasm is calculated from a purely binary collision 

viewpoint, and the collective energy losses are included through an 

extension of the maximum impact parameter. 

sort  of paradox involved i f ,  in fact,  the binary collision t reatmnt  

is conceptually correct. However, the panadox is resolved i f  one 

realizes that the apparent contradiction arises from a comparison 

of two mutually exclusive points of view; namely, the macroscopic 

and the microscopic. 

belongs t o  a macroscopic viewpoint. 

There seem t o  be sow 

By i ts  very nature a polarization effect 

The problem arises in  connection with the expressions derived 

for  the energy loss of a fast p&icle traversing a uniform 

dielectric. 

treats the problem as the passage of a charged body through a plasma 

which is considered t o  be a uniform dielectric o r  whether the 

problem is treated as a collisional phenmna between a charged 

particle and the constituent particles of the dielectric. 

f o m r  treatment the charged body suffers no sidewise deviation in  

its traversal, whereas in the latter a deflecting collision 

The result is obtained i n  identical form whether one 

In  the 

4 



definitely o c c m .  How can the two results be reconciled? 

From a macroscopic viewpoint, the charged particle interaction 

w i t h  the uniform dielectric i s  idealized as the interaction of a 

point charge with a uniform, continuous dielectric. 

the energetic point charge results in a uniform make of polarized 

mdia trailing the point charge. 

The passage of 

On a microscopic scale the dielectric is composed of mbi le  

negative charges e&edded i n  a matrix of positive charges. On the 

Zverage the mbile charges are arranged so that the electr ic  f ie ld  

about any charge is the gradient of a screened coulomb potential. 

The test electron passing through the microscopic dielectric "sees" 

an electr ic  f ie ld  of this s o r t  with w h i c h  it "collides" and is 

scattered f'rcxn its i n i t i a l  path by a small angle. 

a plausability argumnt 

transferred t o  a plasma through polarization by a fast electron 

when the electron velocity exceeds the plasm thermal velocity. 

This result is  incorporated into the energy loss calculation by 

extending the normal minimum scattering angles in  the electron 

collision, so that the polarization effects are accounted f o r  by 

the smallest scattering angles i n  the collisions. 

In Chapter I11 
* 

is advanced showing how energy can be 

4? 25 A more rigorous argumnt has been proposed by Rostoker . 
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We can return t o  the idealized viewpoint through the following 

argumnt. The charged particle suffers many small angle collisions 

in its traversal through the dielectric; the extremely small angle 

collisions being responsible for the polarization loss. Froxu 

d t i p l e  scattering theory the net deviation of the tes t  electron 

from its original trajectory is  distributed about the original 

trajectory equally on either side in the m e r  of a Gaussian law. 

Stat is t ical ly ,  the test electron's path is  predominantly along the 

original trajectory with a small probability of deviation symnetric 

about thz or ig ina l  path. I n  this sense one can state tirat the t e s t  

electron traversed the dielectric mdeviated (mst probably) from 

its original path. 

* 

* 
See Chapter IV. 
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CHAPTER I11 

AVERAGE EYERGY LOSS RATE 

3.1 Introduction 

A n  expression for  the average rate of energy loss of an 

energetic electron traversing a plasma i n  thermal equilibrium is 

derived on the assuqtion that the dominant mechanism f o r  energy 

loss is the Coulomb interaction. 

the dominant C o u l d  interactions fo r  energy loss are electron- 

electron collisions, since an electron-ion or  electron-neutral 

collision w i l l  degrade the electron's energy by a negligible amDunt. 

Theaverage energy loss ra te  i s  derived i n  general for  an arbitrary 

distribution of plasma electrons, f ( w )  . In order t o  obtain a 

n m r i c a l  result f ( w )  mt be specified. A n  i n i t i a l  calculation is 

pe r fomd for  a stationary plasm w i t h  a Maxwellian dis t r ibut ion of 

electron velocities. This calculation is  then extended t o  the case 

It will further be assumd that 

of a translating plasma with a Maxwellian distribution of electron 

velocities (this is  a mdel applicable t o  the plasma behind a mving 

shock m n t .  The calculation f o r  the average loss rate through a 

translating plasma indicates that, for  laboratory conditions, the 

effect of the translation i s  negligible. 

7 
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3.2 A v e m  Energy Loss for  anEnerpptic Test Electron i n  a Plasma 

The collision between the tes t  electron of velocity v and - 
the plasm electron of velocity w can be analyzed easily in the 

center of ~~l i iss coordinate system. For a campletely general se t  of 

- 

velocicips, - v and w, , the energy loss of the tes t  

found t o  be 

where eCm is the center of mass scattering angle. 

electron is 

w2 1 ( 3-1 1 

The energy 

loss is  depende,rt won the angle a t  wPLch the test electron is  

scattered from its o r i g i n a l  trajectory. 

be derived which relates the center of mass scattering angle, eCm , 
A relationship can also 

t o  the laboratory scattering angle, , which measures the 

actual deviation of the test particle from its original trajectory. 

I,%l 
‘Osecm cotell = cotecm + 

If the approximation is made that the test particle i s  energetic, 

1.e. 

transformtion can be simplified considerably, 

v>>w , the expression f o r t h e  energy loss and the angle 

v+w % x-z, and -- 
A v e l l - 2 .  - c m  

( 3-3 1 

Then, the energy loss of an energetic electron of velocity v - 
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af te r  colliding with a plasma electron of velocity w is given by - 

where m is the electronic mass and 0, is  the laboratory 

scattering angle. 
I 

The average energy loss per collision is obtained by averaging 

the typical loss AE(3 1?l,0,) over the scattering angles 0, . 

i 
The weighting *tion is the Mott-scattering cross section 

* 
A conparison of the Mott and the Rutheford scattering cross- 

section is made i n  Appendix A . 
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The to t a l  cross section, at is  given by 

and the integration limits are from e t o  e 
amin 

?he result for A E ( ~ ,  w) - is 

The deBroglie wave length of the relative mtion V is taken as 

the minimum inpact pararneter . * 

The maximm angle of deflection, 0, , w i l l  then be given 
max 

by the scattering angle corresponding t o  bmin . 

f 
In section 

justified. 
3.4 this choice of Ilrinimum impact pararreter is 



I . 

or 

Frcrm the expression f o r  

tan20, can be found. 
max 

11 

cot 6R 
max 1 

2 -- - mlv-wl2 
( 3-9 I 

U s i n g  these expressions the average energy 

- 
loss  per collision f o r  velocities, v and , is given by - 

1 .  2e2h2V2 + e4 
+ 'ln (h2v2+4e4)% h q 2  

In a small time interval, €it , the  number of collisions that 

the incident electron makes with plasma electrons having velocities 

in the range dw is given by - 

The total average energy loss of the incident electron in  a 

tim, 6 t  , due t o  many collisions with plasma electrons i n  the 

velocity range, dw, , is 
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The t o t a l  energy loss rate for  colLjions w th plasma electrons of 

Hence the rate of average energy loss becomes 

all velocities is obtained by integrating over the plasm electron 

distribution h c t i o n ,  thus 

A Maxwellian distribution function is assumed. 

w . w  - -  n 
f(w) = - ew(- - )2m2sin $d $dw (3-12) 

e 
lT3/2w; w2 

t 
* where 4 is the velocity space polar angle coordinate for a 

spherical coordinate system and 

T is the plasma electron temperature, m is  the electronic mass, 

and 

n = I f(w) e. 
W e - 

C a r r y i n g  out the integration formally the result is obtained i n  terms 

of the dimnsionless speeds a, B ,  defined below: 

* 
See Fig. B i n  Appendix B . 
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W where a = -  
t W 

and 

0 

* 
where the 4;s are the appropriate 

equation (3-10) . 

where p = - cos 4 ; 

* 
The 4i flurctions are not t o  be confhsed with the polar angle 

4 -  

c 
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The integrations over velocity space angles, @ , JI have been carried 

out t o  yield the @i h c t i o n s  (See Appendix B) . 

Many simplifications are possible i n  these expressions because 

of the high speeds of the incoming electrons and the form of the 

zssiamd plasm electron distribution function. 

The Maxwellian f’unction w2f(w) is a strong exponential which 

decreases r ap id ly  with w2 ; i .e.,  there are relatively few particles 

with speeds much greater than the thermal speed. In particular the 

effects of collisions with particles of speed greater than & wt 

* 

can be neglected without an appreciable error. 

certainly -le, since at a speed of 

findin@; a plasma electron has decreased by exp(-8). In v i e w  of the 

argurnent presented above, the G fbnctions can be approximated by 

(This criterion is  

wt the probability of 

* 
In fact, the sare argument applies t o  any distribution flrnction 

which does not contain a large population at high velocities. 

c 
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E 

f i W  
=/E.  

W set t ing the upper l i m i t  of the integrals at amax = 
t 

For this calculation, B 2 m; therefore the condition B2 >> a2 

is sat isf ied and the integrands can be simplified accordingly. For 

$2 >> a2 , 

6e2 tan1 I 4e2/hwt 

hwt B2 t 4(e2/hwtI2  
t 2 - -  a 1) , (3-16a) 

( 3-16b ) % l  and @ 3 ' L  3 

The evaluation of G1(B) requires a value for  the mininarm 

laboratory scattering angle in  the collision process. 

valent t o  considering the maximum allowable impact paraneter. 

Ordinarily,  following Cohen, Spitzer and Routly26, the maximum impact 

paramter would be the Debye radius. 

is that the charged particles i n  the plasma have adjusted themelves 

so that the Coulomb potential o f t h e  plasma electron has been shielded 

This is equi- 

Physically the reason for this 

at distances greater than the Debye length. 

incident electron feels no net potential unless it passes within a 

Debye length of the plasma electron. 

accurate results when the incident electron has a velocity 

approximately equal t o  the plasm electron thermal velocity. 

i n  the present case, where the incident particle velocity exceeds the 

The result is that the 

This procedure will give f a i r l y  

However, 
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thermal velocity, the maximum impact parmeter  must be increased t o  

include correctly the energy lost i n  polarizing the plasma with the 

resultant excitation of plasm oscillations. 

analogous to the Cerenkov effect. 

The effect i s  conpleteiy 

A fast electron can transfer energy t o  a polarizable medium over 

a characteristic length which w i l l  be taken as the effective maximLrm 

*act panmeter. The characteristic t i m e  of interaction of the fast 

electron with the plasma is  - bmax , where bm is  the maximLrm V 

inpact parameter. 

plasma oscillation i n  order f o r  energy t o  be transferred t o  the plasma 

This time must be of the order of one period of 

tb--l@& p ~ ~ ~ ~ z & ~ ~ ~ *  

P 

where w = plasma "frequency". Since 
P 

W 
w 5 - ,  t 

'd 

it follows that 

The Debye length nust be increased approximately by the factor 

include polarization effects. 

B to 

The mlnimm scattering angle can now be written i n  terms of the 
m;udmum inpact parameter calculated above. Thw 
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8 are functions of the relative ?he scattering angles, 8 

velocity, Ix-~l , and hence depend upon, = cos(x, 5) . Performing 

the integrations over angles, the result is 

E,min E,max 

where A = - w  1 3 p  B . Again using the condition that 
2 t 3X e3 nel/2 

For an energetic test electron, small terms can be neglected; then, 

The final result for  the average energy loss ra te  b e c m s  

If the energy loss i n  a distance, dx , is much smaller than the 

incident energy, E , the energy loss rate can be transformed as 

follows , 



i and 
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( 3-23 1 

The result derived above for  the average energy loss ra te  using 

a collisional theory t h r o w  the ad hoc extension of the maximum 

impact parameter is identical t o  the results derived by various 

authors 
dE Table I .  The expression for  < > shown i n  the table differ only 

i n  the choice of rrdninnrm impact parameter. 

. The results of a few different authors are shown i n  7-16 
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3.3 Averwe Energy Loss Rate i n  a Translating Plasma 

The average energy loss was  calculated f o r  a translating, 

Maxwellian plasma. 

a translating plasma i s  given by a f’unction, ,(a), , of a dimension- 

less parameter, 

The result indicates that the energy loss  rate in 

us , times the energy loss ra te  in a stationary 

( 3-24 1 

The parameter, us , is  the dimensionless translation speed of the 

plasma. 

Vs is the translation velocity of the plasma and wt is the plasma 

thermal velocity. The f’unction S(a,) i s  shown i n  Fig. 3.2 . For a 

complete derivation see Appendix C . 
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S(as) For the Effect of the Plasma 
Translation on the Ehergy Lass 

Fig. 3.2 
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3.4 MinirmnnImp act Panmeter 

If the electron test par t ic le  speed is  large e n o w  t o  excite 

collective, longitudinal oscillations i n  the plasma the minimum impact 

parameter must be taken t o  be the deBroglie wavelength of the test 

electran. 

?"ne classical distance of closest approach, which is the impact 

p a r a t e r  corresponding t o  a right angle deflection i n  the center of 

mass coordinate system, is given by b = e2/E , where E i s  the 

relative energy of approach. 

electron of m m n t m  mv i s  3 =-h/mv . The ra t io  of these two 

lengths is given by 

This can be shown t o  be true for  usual laboratory p l a s m .  

The dewoglie wave length of the t e s t  

where a is  the fine structure constant, 1/137, and B = v/c . The 

ra t io  is uni ty  for B 2 .01 which corresponds to an energy of the 

test electron of about 20 electron volts. 

longitudinal plasma oscillations to be induced by the t e s t  electron is  

that v >> wth , where 

The criterion for  

wth is the thermal speed of the plasma 

electrons. Specifically, l e t  a lower limit be chosen so that v/wthTIO. 

- 
Then it follows that for v/wth > 10 , the following inequality must be 

satisfied for  the test electron energy, 

E . Laboratory plasmas might cover a range of since v/wth = (E) 

tmperatures f r o m  1/4 ev fo r  Cesium up t o  4 o r  5 ev fo r  a shock 
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heated plasma. 

fo r  the test particle t o  excite longitudinal oscillations i n  the 

plasma, it must have an energy of 25 t o  500 electron volts or  greater. 

A t  these energies the de3roglie wave length certainly exceeds the 

classical distance of closest approach. 

U s i n g  these values as typical, it is evident that, 

3.5 V d i d i t y  of the CiassicdL Coiiision ivlociei 

From the Heisenberg uncertainty principle, a relationship can be 

derived for  the minimum uncertainty i n  the impact parameter i n  a 
Coulamb force f ie ld  collision. 

In order for classical collision theory t o  hold, we would require 

that the uncertainty i n  the impact paramter be negligible so  that an 

impact p m t e r  pep - se would have physical meaning. The minimum un- 

cerWnty  i n  p i s  small when 

2 z z  > > I .  
137 B 

In terms of the collision diameter, b (classical distance of closest 

approach), and the rationalized deBroglie wave length for  relative 

mtion,  this expression can be rewritten, for  z = Z = 1 

This result would s e e m  t o  indicate that a collision between an 

energetic test electron and a plasma electron could not be treated 

using classical collision theory. (In fact ,  it w a s  shown that, f o r  
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b energetic test electrons, << 1 .)  Fortunately, W. GOrdon*'l has 

obtained an exact quantum mechanical treatment of the Coulomb 

scattering problem and it is  identical 3 with the classical Rutherford 

result for all values of the parameter - 137 €3 
E. J. W i l l i a m s 2 8  has 

pointed out a reason for  the plausibility of this agreement. From a 

dimensional argument he has shown that i f  the force law of the  col- 

l i s ion  varies as r n , then the scattering cross section w i l l  vary as 

, where h is Planck's constant. Only for  an inverse-square h4+2n 

force l a w  interaction does the dependence on h vanish and 

cer ta in ly  the vanishing of h is a necessary condition for equality 

between a classical and a quantum mechanical theory. 



CHAPTER N 

DISTRIBUTION OF ENERGY LQSSES 

When energetic electrons traverse a layer, x , of plasm, they 

However there will be a w i l l  lose on the average an e n e r g  < A > . 
s t a t i s t i ca l  fluctuation of energy losses so that on traversal of the 

slab of plasma an i n i t i a l l y  monoenergetic electron beam w i l l  emerge 

with a distribution of energy losses whlch w i l l  be denoted by f(x,  A ) ,  

where f is normalized so  that 

1 f(x,A)dA = 1 . 
A 

Let w(E, E )  be the probability per unit path length that an 

incident electron of energy E will suffer a loss E . Throughout 

this calculation it w i l l  be assurned that E << E so  that E w i l l  be 

taken to be constant, Eo . 

A kinetic equation fo r  f(x,A) is obtained by equating the 

change i n  f along a path length, dx , to the change produced by 

collisions. The collision integral expresses the difference i n  the 

rimer of particles which acquire, due t o  collisional losses, an 

energy, E , and the n W e r  of particles which leave the volume i n  

energy space. 

w i t h  no externally applied forces. 

This is  essentially a steady flow Boltzmann equation 

26 
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* 
The probability of losing an energy greater than Eo is zero 

the upper lirnit of the integral can be increased t o  in f in i ty .  

so that 

Since the Unet ic  equation does not contain the independent 

Variables x and A ewl ic i t ly ,  a solution can be obtalned by using 

the Laplace transform technique. The transform of the kinetic 

equation is given by, 

0 d X  

The i n i t i a l  condition on f (x ,  A )  is  that 

beam of incident particles is mnoenergetic at the entrance to the 

slab, 

f(0, A )  = 6(0) , i.e., the 

This i n i t a l  condition gives T(0, s) = 1 , so that equation 4-2 

can be integrated t o  obtain 

-X Jm ~ ( ~ ) [ l - e - ~ ~ ] d ~  
0 

Q(x,s) = e 

Final ly ,  by subst i tut ingthis  expression into the inverse transform 

for  f(x,  A )  , the formal solution is  given by 
m 

' I w( ~ ) [ l - e - ~ ~ ] d ~  

where s is the Laplace transform variable. The inverse transform 

is carried out along a l ine parallel t o  the imaginary axis of the 

complex plane 

* 
I n  this 

and shifted t o  the right by u > 0 . 

theory energy gain mchanisms are not allowed. 



To conplete the solution f o r  f the integral can be simplified 

for  various ranges of E . Let be a small energy loss so that 

where E is  the largest possible loss. It is max max << E Emin 

assumd that only those values of s are wor tan t  fo r  which 

Another energy €1 w i l l  be introduced such that €1 > E~ and 

sE1 << 1 . ?he integral over E can be s p l i t  into two integrals 

with limits from 0 t o  €1 and from €1 t o  = . 

where the first integral has been approximated by the relation 

e- 

The probability of 

section fo r  energy 

energy loss, W ( E )  , can be derived fromthe cross 

lo& . m e  d i f f e r e n t i a  cross section for  an 

energy loss, E , is given by 

where E is the energy loss of the test electron of energy, E , . 
It is a s s m d  that the test electron is  considerably mre energetic 

than the plasma electron. The probability of losing an energy 

between E and E+dE per collision is  
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where ut is the to t a l  cross section for  energy loss and is  given by 

me nunher of collisions per unit length traversed by the test 

electron is CJ n ; so that the probability of losing an energy t e  

between E and E+dE per uni t  length of travel i s  

Usingthis expression t o  continue the solution for  f , integrals of 

the following type must be evaluated, 

It w a s  stipulated that 

t o  

s E 1 < <  1 s o  that the integral is simplified 

The integral on the FEE of this equation can be rewritten as follows. 

e 1 .-u -1 " -u " -u 
du du d u + /  - + I  - r -  U d u = I  - U 

e 
U l U  

S E 1 S E 1  SE1 
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then 

where 

minimum scattering angle emin . The complete expression can now be 

E- 
is given by the minirmun energy loss corresponding t o  the 

written as 

= 1 - an SEI- C 

where C = 0.5777 ... is Euler's constant. The result is 

m 

dE = s(1-C-an sei) ( 4-6 ) 
E2 

1 
E l  

The second integral t o  be evaluated can be integrated directly t o  

y ie ld  

x Imw(E)[l-e-s"]dE = &Jl-c-iln S E m 1  . 
0 

P e r f o m  the integrations, the solution for 

where 

f(x,A) reduces t o  

( 4-8 1 

dv ( 4-9 1 



v = gs 

A - s(kn E./€&+ 1 - c) 

5 A =  

ne4n 
5 = x -  E 

e 

and c = 0,577 i s  Euler’s constant. 

and 

(4-10) 

(4-11) 

1 The distribution of energy losses, f , is found t o  be - times 
5 

a universal function of a dimensionless paramter A . The f’unction 

$(A) , shown in Fig. 4.1 , is given by Landau in his paper2’. 

f’unction has a maximum at 

loss is given by (see Fig. 4.2). 

The 

X = -.05 so that the mst probably efiergy 

A = S(2n- + 0.37) . 
0 ‘min 

(4-12) 

A plot of f (x,A) as a f’unction of plasma electron density,  electron 

beam energy, and distance traversed is shown i n  Fig. 4.3 , and 

Fig. 4.4 . 
The solution which has been obtained describes the interaction of 

an in i t i a l ly  mnoenergetic beam of energetic test electrons traversing 

plasma. It is inportant t o  note that the spreadkg in energy of the 

test particles does not depend upon a temperature for  the test 

particles since, i n  fact, they have been assmd t o  enter w i t h  zero 

temperatme (delta M c t i o n  initial condition). 

energy em-s from the solution of the Boltzmann equation and is due 

The spreading i n  

physically t o  the binary collisions which w e r e  assumd as the model. 
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In each binary collision there is a possible variation of energy 

losses due t o  collisions at different angles. 

occur at very small scattering angles so that the spread i n  energy 

losses should be small and, indeed, the solution indicates that this 

is the case (see Fig. 4.4) . 

M o s t  of the collisions 

me probability of an energy loss between A and A+dA is given 

by 
f(x,A)dA = sT(X)dA 1 , 

1 dX = - d A  , 5 

so that 

In tenas of A-do we can write 

A-A - .055 

f(x,A)EU =q(A)d X . 

0 

5 
A =  

and for  conditions considered i n  this paper 

( 4-13 

=055 << A. 9 

A-A. 
A = - - -  

5 ’  

and then f(x,A)dA = $(-)d(- I *  

so that 

A-A. A-A. 

5 5 (4-14) 

The mtnimum energy loss i n  an average collision is given i n  term 

of the ndnimum scattering angle by the following 

For an energetic test electron the average relative energy can be 
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Landau's Universal Function, 4 ( ~ >  

Fig. 4.1 
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Ehergy Relarratian of an Fnergetic Test 
Electron Beam in a Plasm 

Fig. 4.3 
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Distribution of Energy Losses as a Function of Electron 
Density f o r  1500 ev Test Electrons 

Fig. 4.4 
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approximated as 

where E is  the energy of the test particle only. Using small angle 

approximations for sin2emin , 

so that 

Inserting the expression for A found previously, 

and 

(4-16) 

The r a t i o  of E: is a quantity of importance and it is  given by 
min 

5 1 E  
i-6 ; 2 " -  

-= 
E 
min 

Typically the values for the various parameters are E = 1500 ev, 

n = 5x10 , 5 = 5.73 and A. = 72 ev, so that the statement that 16 

.055<<Ao is i n  general valid, verifying that 

A-A 

5 1 -  1 0 f(x,A) = ~7 (- 

Assumptions w e r e  made i n  obtaining the solution that 

S€ << 1 ; SE >> 1 . min max 

I n  the expression for 7 ( A ) ,  the variable of integration is 
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‘L 
significant i n  the region v % 1 . 
are equivalent t o  the conditions that 

The assumptions that w e r e  made 

.!”Emin 

.!<<E , since v = sg . max 

The first condition is satisfied easily since typical values fo r  

{ / E m  are %lo9 . This result i f  feasible because the observed 

energies 5 are the accumulation of numerous multiple scatterings of 

extremly small energy losses . m e  results of this calculation 

are limited by the second condition imposed above, g < < ~  

the collisions of the energetic tes t  electron result i n  small energy 

losses, E 

Since m a x ’  

“Eo , where E- corresponds t o  the energy loss i n  an Inax 

average collision at the maximum scattering angle, eQ max 
-1 

e k  = cot hE/me2 , 
max 

2 
so that 5 << E(tan-’me2/hE) . ( 4-17 1 

In  order t o  understand the restriction imposed on the solution by 

equn. (4-17), the inequality is rewritten i n  terms of average energy 

loss and the definition of 5 . For a small energy loss, 
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where x is  the distance traversed through the plasma. 

ma, 
E = -  hE 1 

1 E  2kn - - E 
Ai7 +Iwp 

The fact that  the t e s t  electmn is energetic implies that 

- 2e2 << 1 , 
hv 

and using a small angle approximation, 

-1 me2 -1 2e2 % 2e2 tan (-) = t a n  (x)" - hE hv 

Then the condition in  eqn. (4-17) becomes, 

or 

This inequality imposes a modest restr ic t ion M the relative energy 

loss. ?he stipulation w a s  that 

n 

Taking a reasonable valve, 

and 
e4 < 

' 7 2  " .01 . h v  " 
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The logarithm term is of the order 10, 20 that the inequality is 

or 

The solution f o r  f(A) should be valid, conservatively, for 

energy losses less than 9 per cent of the in i t ia l  beam energy. 
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CHAPTER v 

TRANSMISSION OF THE ELECIRON BEAM 

When an energetic test electron traverses a slab of dense plasma, 

the test electron experiences a large number of small angle 

scatterings resulting i n  a net angular deviation from its or iginal  

trajectory. Since the individual scatterings are at small angles, 

<< 1 , the problem can be treated s ta t i s t ica l ly  i n  a reasonably 'i 

simple manner*. For small scattering angles, multiple scattering 

theory predicts an accumulated deflection angle, 0 , distributed 

about 8=0 according t o  a Gaussian law. 8 is measured f r o m  the 

entrance plane of the beam. Thus 

where p(0) de is  the probability of realizing a net deflection 

angle between 0 and Wd0 , and <02> is the average squared, 

accumulated deflection angle. 

that a beam of independently interacting test particles w i l l  have an 

emergent current distribution (provided the energy change of the 

particles is small, i.e., AE << E ) given by 

This is equivalent t o  the statement 

0 

3E 
See Appendix D for  a simple treatment of elementary, multiple 

scattering theory. 

41 



42 

where jdO is  the beam current emerging between an angle of 8 and 

0 +do . 
t o t a l  current emerging at all angles t o  the incident beam current. 

The value of the constant can be detemined by equating the 

Solving for the constant, 

P JO .i(0> de = 

where Jo is the incident beam current and 

The transmission of the beam through an exit aperture defined by 

(see Fig. 5.1) i s  calculated by taking the ra t io  of the beam current 

exiting through Oo t o  the to ta l  incident beam current, Jo . A 

diagram of the transmission is shown i n  Fig. 5.1 . 



43 

Fig. 5.1 Diagram of Beam Transmission 

Then the transmission is given by 

J ( O o )  erf(8 /<02> V) 
T=-= 0 

Jo e r f (  7r/2/<02>”~ 

where the t o t a l  current Jo is given by 

Jo = J ( IT /~ )  . 
A plot of the transmission is shown i n  Fig. 5.3 . 

The average squared, accumulated deflection angle, <e2> is 

equal t o  the average squared deflection angle per collision tims the 

t o t a l  number of collisions. Thus, 

n 

( 5-4 1 

(5-5 1 

( 5-6 ) <82> = p <g2> , 
where P is the average nunher of collisions i n  a single traversal of 
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the plasma slab and <e2> 

per collision. For smdll angle collisions P = atDn , here at is 

is the average squared angle of deflection 

the t o t a l  scattering cross section and is given in t e r n  of the 

inpact p-ter by 
X max 

= I 2 a x d x .  “t 
xmin 

D is the distance traversed, and n is the plasma electron density.  

Performing the integration, 

P = 2a Dn $x&- x&) . (5-7) 

The mxhnnn  inpact parameter is the dominant term and x&= (+., 

where hp is the Debye radius, v is the test electron speed and wt 

l2 , 
t 

is the most probable plasma electron speed. 

expression for  AD abd wt , 
Substituting the 

P = DE/2e2 , (5-8) 

1 
2 where E = -m2 . 

The value for  <e2> per collision is calculated by avera@ng 

e2 over the scattering cross section f o r  0 . 
scattering cross section is used. 

The Rutherford 
* 

* 
I n  the l i m i t  of small angle collisions, the Rutherford cross- 

section is identical t o  the Mott scattering cross-section. 
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Argument of the Error Function 

Fig. 5. 2 
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Beam Transmission 



I 8 

I 

z 
0 
cn - 
z 
a 
cn z 
K c 

.E 

.€ 

.4 

.2 

.I c 

.oa 

.O€ 

.04 

.O z 

.02 

- eo=.oi rad --- eo= .02 tad 

- 
- 



4 7  

2, 

Making a small angle approximation, sine 2, e , the result is 

where e - = -  2e2 
hv 

emin E 2 / ~  . 
* 

The to t a l  cross section is related t o  the average rimer of 

collisions in 

- - 

and 

one traversal of the slab by 

( 5-11 

* 
The t o t a l  cross section f o r  an inverse-square law interaction 

potential as derived above has a peculiar dependence on energy and 
density. In  fact ,  the dependence is the reciprocal of what one would 
expect, 
the to t a l  Coulod~ interaction cross section owes i ts  magnitude t o  the 
small angle encounters and these are mre nurnemus fo r  a tenuous 
plasma and a hi@ velocity t e s t  particle. 

ut 'L E/n . The reason for this peculiar dependence is that 
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Finally, the average squared, accumulated deflection angle is 

given by 

dE 
dx E <-> 

x = m  ’ 
vhere the scattering due t o  the ions is included i n  <02> . This 
result is independent of plasma electron density and depends only 

upon the energy of the t e s t  electron beam and the distance traversed 

through the plasma. 

the most probable energy loss. 

A similar expression can be derived in terms of 

B calculation of the scattering due t o  ions proceeds i n  cconplete 

analogy t o  the electron scattering calculation. The result is that 

the ions contribute another equal contribution t o  the scattering of 

the beam. 

shape, the effect of the ions i s  included i n  the beam transmission 

result by increasing the average squared, accumulated deflection 

angle by the factor two. 

Since the multiple scattering profile i s  Gaussian in 

!he average squared, accumulated deflection angle is  related t o  

the average energy loss rate in  a simple manner. U s i n g  the 

expressions derived fo r  <-> m and for  <e2> , the following relation dx 

is  obtained, 

0 
A 

<$> = 2 E ( 5-15 1 

A plot of this last expression i s  given i n  Fig. 5.4 . 
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Average Squared, Accumulated Deflection 

Angle 

Fig. 5. 4 
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APPENDIX A 

ELECTRON--N COLLISION ASPECTS 

A . l  Conparison of Mott and Ruthex-fcmlCross Sections 

The calculation o f t h e  energy loss rate,  dE/dx , yie lds  the same 

result fo r  v >> wt regardless o f t h e  choice of cross-section. The 

reason for  this is evident fromFig. A . l  . The difference in dE/dx 

using the Rutherfardcsoss-section as compared t o  that using the 

correct, Mott cross-section will ar ise  in the computation of <hE> 

Fi(ee) 

angle function, o r  the Mott cross-section times the solid angle 

fbc t ion .  

refers t o  either the Rutherford cross-section times the solid 

FM(e,) = coteR - tan3eR - tame (A-2a) 

F#,> = coteR (A-2b) 

It is evident from Fig. A . 1 t h a t  f o r  small emax , FM= FR and hence 

either cross-section w i l l  y ie ld  the same result. 

the test electron decmases the maximum scattering angle, 8- , 
As the velocity of 

increases because the minimum impact parameter, which is  the 



I 51 

Comparison of t h e  Rihherford and the Mott 
Scattering Function 

Fig. A.1 
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def3roglie wave length, decreases. 

electrons it would be incorrect t o  use the Rutherford cross-section. 

Therefore, for lower energy test 

A. 2 Maxirm;lm Scattering Angl e 

The maximum scattering angle for  a single collision event is 

found t o  be of the order of 4' for the situation described in this 

paper, v >> uj From the collision kinematic equations, the maximum t o  

laboratory scattering angle is related to the mi- hpact para- 
-1 2e2 mter, 6- = tan i;;; tan-' a/B , where a is  the fine 

structure constant 1/137, and 

i3= .1 and .* .  8 '% tan 

angle is linrited t o  a small value because of the l i m i t  placed on the 

minirmrm inpact paramter, n a ~ ? l y  that it be equal to the deBrogUe 

wave length of the test electron. 

B = c V . A typical value for B is 

'L -' 4' . me maxinarm scattering 137x. 1 Illax 

Because of the smallness of the maximum scattering angle, the 

results obtained using the correct, Mott scattering cross-section are 

identical to those obtained using the Rutherford cross-section. For 

lower test particle energies the maximum scattering angle can becom 

much larger, e.g., B = .01, 0- = 36' , and for  these angles the 

effect  of the extra term introduced by the Mott cross-section begins 

t o  be appreciable. 

A plot of the maximum scattering angle as a f'unction of test 

electron energy is given in Fig. A . 2  . 

1 



53 

Maximarm Scattering Angle Per Collision f o r  Electron- 
Electron Scattering with Relative Energy Approach, E . 

I 

Fig. A. 2 
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The maximLrm scattering angle of interest  t o  this calculation is  

approximately 37O, corresponding to  the lower limit of approximately 

25 ev se t  on the tes t  par t ic le  energy so that collective oscillations 

would be excited. 

mde f o r  test particle energy losses from binary collisions i n  the 

regime v >> w 

F’rom Fig. A.2 it is  evident that any calculations 

would be insensitive t o  the choice of scattering t 

cross-section. 

A.3 Tota l  Cross Section for Electron-Electron Scattering 

The t o t a l  cross section for  a Coulornb law interaction, i n  

general, diverges due t o  the long range nature of the Coulomb 

potential. 

remove the divergence of the to ta l  scattering cross section. 

larger scattering angles are Es t r i c t ed  by quantum mechanical effects 

for  an energetic t e s t  particle, i n  that the minimum impact paramter 

is limited t o  the deBroglie wave length of the energetic test 

particle. The small angle scatterings are limited by the natural 

screening of the microscopic e lectr ic  fields which exist within a 

plasma. 

on the average, screened Coulo& fields and they extend approximately 

only as far s a Debye radius. 

In a plasma there are natural, physical cut-offs which 

The 

The electr ic  f ie lds  about a charged particle i n  a plasma are, 

In term of the scattering angles, the to t a l  CMSS section is 

The intepand is  the Mott scattering function for energetic electrons 
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and E is  the energy associated with the relative velocity of the 

colliding electrans. 

term of the integrand is  significant for  energetic particles, so  that 

the expression reduces t o  the Rutherford formla  

It was shown i n  Sec. A . l  that only the first 

Tne t o t a l  cross section can a lso  be written i n  terms of the 

-act pmamters. Written in  t h i s  manner, the physical maning of 

the cross section as a collision area is  mre apparent. 

pmax 
Ot = /  2.rrpap 

pmin 
(A-5) 

Either form will yie ld  the s a n ~  numerical result since there is a one 

t o  one correspondence between the impact paraIrk?ter and the scattering 

angle. P e r f o m  the integration over inpact p m t e r s  we find that 

0 = ll(P-- 2 Pkn) 
t 

Substituting the expressions, for Pmax and PIIlin , 
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APPENDIX B 

CAEULATION OF THE Qi FUNCTIONS I N  IELOCI'IY SPACE 

'ihe expression fo r  the energy loss rate must be integrated over 

the velocity space angles pl , and Q defined in the diagram below. 

\ 
Flg.B.l Velocity Space Coordinate 

System 

?he z-direction is oriented i n  the direction of the incoming electron 

velocity, v .  
isotropic i n  velocity space. 

result that all f'unctions are independent of the angle JI , and the 

integration over pl yields 2.r: . Integration over the polar angle, 

The distribution function f ( w )  - is assumed t o  be 

TNs condition is manifested i n  the 

Q , involves integrals of the following type. 
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?he relative speed is rewritten, 

Integrating by parts after rraking the substitution 

u = Iln A ( 8 q  2aBp + a 2 )  , 

and 

-1 

sin  d 
0 ]$%J- 
‘II 

Making the substitution 1.1 = -cos4 , 

=--(v2+ 1 w2+ *vw!J)-1’21 
vw 

-1 
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w < v  1 1  
v v2 - w2 ' 

= 2. (- 
A mm complicated integral of interest involves the logarithmic 

function, 

(B-5 1 

We write the integrand i n  terns of p = - cos$ and then make another 

substitution 

u = v2+ w2+ 2vwu . 
?hen w e  have t r a n s f m d  t o  a simpler integral, 

2e2h2u du . - -V2 En 
& J U  [h2u + 4e4]'/2 

Integrating by parts with the following arrangemnt, 

With the substitution v = uv2 , the l ydx is t ransfomd into 

trigonomtric form, so that 
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With these preUminary results, the original integral can be 

evaluated. 

2e2h2(v + W I 2  - = - 1 {lv-wlm 
vw [h2(v + w>2+ 4e4l3l2 

2 
- I v-w I fin 2e 2h2 (v+w ) + (v+w) - Iv-wl- e yl, 

[h2(v - w ) ~ +  k4I3 I2  

The angle y can be s-lified by means of the mnemonic triangle 

below. 

Fig. B.2 Mnemonic Triangle for  the 
Angle Y 
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Finally we can solve for y in a sinpler form 

. 
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APPENDIX c 

DERIVATION OF S(as)  FOR A TRANSUTING PLASMA 

An expression for the average energy loss rate of an energetic 

test electran traversing a plasma was derived in Chapter 111. The 

final result was obtained by assmiin@; a Maxwellian distribution of 

plasma electron velocities. 

calculation allows the result t o  be obtained, i n  principle, for  any 

distribution of plasma electron velocities provided there is  no high 

energy tail present. 

choose a d is t r ibu t im f'unction which is isotropic i n  a t&lating 

reference f'ram. 

electrons behind a mving shock front. 

However, the formalism of the loss  rate 

I n  particular, it will prove interesting t o  

Such a distribution function describes the plasma 

In the following t reatmnt ,  it w i l l  be assumed that the plasma 

electrons, behind a mving shock front, can be described as having a 

Maxwellian distribution i n  a frame of reference which is moving with 

a constant velocity, i& . The coordinate system is  indicated i n  

Fig. c.1 . 
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I 

-w.w - -  

Fig. C . l  Spherical Coordinate System in the 
Translating Frame 

The z-axis is taken along t h e  direction of propagation of the plane 

shock. 

a Maxwellian distribution, 

In the unprimed, translating f’ram, the plasm electrons have 

The transformation f r o m  the unprimed, translating frame, t o  the 

p h d ,  laboratory fhm is given by, 

Making the transformation, 
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and since 1, = kVS 
2 2 2 2  

w. w = w' + w' + w' 
X Y Z  

tvs- 2w;vs - -  

w = w cost$ 
X 

where 

w = w S i n $ C O S $  
Y 

w = w sinfjsinr) . z 

Then, i n  terms of t$, $ , 

- -  w. w = w2- 2"vs sin$sin++ V$ . (C-3) 

In order t o  evaluate the energy loss rate, the collision 

f'unction mst be averaged overthe asymetric distribution function. 

This averaging involves integrations i n  velocity space of the 

following types: 

F r o m  the integral representation of the Bessel function, Jo , 

and making the substitution that cos8 = sin$ , we can evaluate the 

where 
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The integration over the polar angle (p involves another Bessel 

function integral, 

a 
1 Io(k sin41 singd4 . 
0 

(C-8) 

An integral identity appropariate for th i s  calculation is 

With appropriate changes of variables, we can write 

0 

- 1 Io(k sin 
-a/2 

Making the change 

XI x dx = T a I v 2 ( 9  k 1-1,2(7-) k 

of variables, x = -y , and noting that the integrand 

is symmtric about y = a/2 , we can evaluate the i n i t i a l  integral. 

The result is 

a 

(C-10) 

A final integration must be resolved involving an integral of 

the following type, 

(C-11) 

are &fined i n  terms of elementary functions. ?he I1/2 ' I - v 2  

(C-12b ) 
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3. then 11,2 I-l/2 = -sin(2 ny i y)  . (C-13 ) 

Using the exponential definition of sin (2iy) , this can be written 

as 

then 

F(A). (C-14) 

Formally, the result for the average energy loss rate is given 

by 3 

where, 

and 

(C-16a) 

x [Iosin$d~da] 

(c-16b ) 
vs a E - .  s w  t 

The result obtained for  the energy loss rate must reduce t o  the 
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expression obtained previously f o r  the case of no shock velocity i n  

the distribution f'unction. We can see that this is indeed the case. 

l n h  -a2 
T I "  1 lim gl = T 1 J - a2e sinr$d$da 

a -to 0 0  f3 
S 

:.g2 = G~ for B~ >> a 2 

We can simplie gl and + by using the integrals which w e r e  

evaluated previously, 
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OD 

9 (C-18) -(A2a”- 2a’) -(A2a’2+ 2 ~ ’ ) ~ ~ ’  
where F(as) = I a’[e - e  

0 

a a  
S 
2 

a’ = - and 

By completing the square i n  the exponent of the F(as) function, the 

integral can be evaluated. 
2 

The flmction S(as) is defined t o  be the effect of the 

translation. 

Conparing these two expressions, the result is 

(C-21) 

In this expression we can note that the plasma temperature 
V 

(related t o  wt) appears only i n  the as = w term, 

negligible f o r  small shock velocities. 

not a function of the plasma temperature for  low shock velocities. 

This result is not surprising because i n  the derivation we have 

is 
t 

Therefore, the energy loss is 
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neglected the plasm electron velocity in comparison with the beam 

electron velocity. 

approximatbn. The plasma temperat= appears i n  connection with the 

shock velocity because here the plasma electron velocity enters as a 

cmss prodtuct term giving rise t o  the Bessel function rather than as 

a difference and hence is not neglected. 

normally found in e x p e r h n t a l  apparatus, Vs ; 10 6 W s e c  and 

T @,OOO% so that a Q which inplies that the stationary 

?Ns corresponds t o  a zero temperature 

For shock conditions 

s -  

calculatians are adequate for laboratory conditions. 



ELEDEATmY MULTIPLE SCA"G T)TEx>RY 

Ihe interact im of a beam of eneTgetic test electrons traversing 

a finite plasm slab can be described s ta t i s t ica l ly  by multiple 

scattering theory. Multiple scattering theory is valid because the 

energetic test electrons make numerous, small angle collision during 

the traversal  and the resulting energy loss is a small perturbation 

on the ini t ia l  energy. 

Consider the ith collision of the electron which occurs at a 

point y4 measured from the exit plane of the plasma slab. 

Fig. D.l Coordinate System for the ith Multiple 
Scattering 
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E 
me ith collision results in  a scattering m e e ,  ei , and the 

projected path of the scattered tes t  electron on the exit plane is 

given by the polar coordinates r, on the x-z plane. After 

rmltiple col l is ims,  the accurrmlated, projected scattering angle on 

the x-y plane is Q = c eicOsTi , for small ei . The projected 

displacemnt is 
i 

Since yi and ai are 

and 

The average squared 

x = c yiei COSTi , 
i 

~2 = c y y.e e myi  cosyj . 
i j  i J i j  

independent, and Fi is random, 

value of yi i s  simply the location of the mmnt  

of iner t ia  of the slab. 
D 

y; = y2= 1/D 1 y2dy = l /3D2. 
- -  

0 - 
For el << 1 it can be shown that c e l  = <e2> P z  <e2> where 

i 
<e2> 

is the average squared angle of deflection per collision and P is 

the average nmber of collisions in  one traversal of the slab. 

. .  x2 = 1/6D2<e2>p . 
?he actual deviation from the  original trajectory is & 
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c COSYi COSrQ 
j ij 

Coszcp, since r and 43 are independent. 

:. i? = 2 x 2 .  
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